On the mean square of the Epstein zeta-function
We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminan...
Saved in:
Date: | 2018 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2018
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-920 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-9202018-03-21T07:18:38Z On the mean square of the Epstein zeta-function Savastru, O. V. Varbanets, P. D. Epstein zeta-function, approximate functional equation, asymptotic formula, second power moment 11N37, 11R42 We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminant \(-4A\). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920 Algebra and Discrete Mathematics; Vol 4, No 1 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920/449 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2018-03-21T07:18:38Z |
collection |
OJS |
language |
English |
topic |
Epstein zeta-function approximate functional equation asymptotic formula second power moment 11N37 11R42 |
spellingShingle |
Epstein zeta-function approximate functional equation asymptotic formula second power moment 11N37 11R42 Savastru, O. V. Varbanets, P. D. On the mean square of the Epstein zeta-function |
topic_facet |
Epstein zeta-function approximate functional equation asymptotic formula second power moment 11N37 11R42 |
format |
Article |
author |
Savastru, O. V. Varbanets, P. D. |
author_facet |
Savastru, O. V. Varbanets, P. D. |
author_sort |
Savastru, O. V. |
title |
On the mean square of the Epstein zeta-function |
title_short |
On the mean square of the Epstein zeta-function |
title_full |
On the mean square of the Epstein zeta-function |
title_fullStr |
On the mean square of the Epstein zeta-function |
title_full_unstemmed |
On the mean square of the Epstein zeta-function |
title_sort |
on the mean square of the epstein zeta-function |
description |
We consider the second power moment of the Epstein zeta-function and construct the asymptotic formula in special case, when \(\varphi_{0}(u,v)=u^{2}+Av^{2}\), \(A>0\), \(A\equiv1,2(mod\,4)\) and \(\varphi_{0}(u,v)\) belongs to the one-class kind \(G_{0}\) of the quadratic forms of discriminant \(-4A\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/920 |
work_keys_str_mv |
AT savastruov onthemeansquareoftheepsteinzetafunction AT varbanetspd onthemeansquareoftheepsteinzetafunction |
first_indexed |
2025-07-17T10:34:02Z |
last_indexed |
2025-07-17T10:34:02Z |
_version_ |
1837889950612193280 |