Topological semigroups of matrix units

We prove that the semigroup of matrix units is stable. Compact, countably compact and pseudocompact topologies \(\tau\) on the infinite semigroup of matrix units \(B_\lambda\) such that \((B_\lambda,\tau)\) is a semitopological (inverse) semigroup are described. We prove the following properties of...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Gutik, Oleg V., Pavlyk, Kateryna P.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/924
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:We prove that the semigroup of matrix units is stable. Compact, countably compact and pseudocompact topologies \(\tau\) on the infinite semigroup of matrix units \(B_\lambda\) such that \((B_\lambda,\tau)\) is a semitopological (inverse) semigroup are described. We prove the following properties of an infinite topological semigroup of matrix units. On the infinite semigroup of matrix units there exists no semigroup pseudocompact topology. Any continuous homomorphism from the infinite topological semigroup of matrix units into a compact topological semigroup is annihilating. The semigroup of matrix units is algebraically \(h\)-closed in the class of topological inverse semigroups. Some \(H\)-closed minimal semigroup topologies on the infinite semigroup of matrix units are considered.