Контактні взаємодії в одновимірній квантовій механіці: сім’я узагальнених б'-потенціалів

A “one-point” approximation is proposed to investigate the transmission of electrons through the extra thin heterostructures composed of two parallel plane layers. The typical example is the bilayer for which the squeezed potential profile is the derivative of Dirac’s delta function. The Schr¨odinge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
1. Verfasser: Zolotaryuk, A. V.
Format: Artikel
Sprache:English
Ukrainian
Veröffentlicht: Publishing house "Academperiodika" 2019
Schlagworte:
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019522
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:A “one-point” approximation is proposed to investigate the transmission of electrons through the extra thin heterostructures composed of two parallel plane layers. The typical example is the bilayer for which the squeezed potential profile is the derivative of Dirac’s delta function. The Schr¨odinger equation with this singular one-dimensional profile produces a family of contact (point) interactions each of which (called a “distributional” б′-potential) depends on the way of regularization. The discrepancies widely discussed so far in the literature regarding the family of delta derivative potentials are eliminated using a two-scale power-connecting parametrization of the bilayer potential that enables one to extend the family of distributional б′-potentials to a whole class of “generalized” б′-potentials. In a squeezed limit of the bilayer structure to zero thickness, the resonant tunneling through this structure is shown to occur in the form of sharp peaks located on the sets of Lebesgue’s measure zero (called resonance sets). A four-dimensional parameter space is introduced for the representation of these sets. The transmission on the complement sets in the parameter space is shown to be completely opaque.