Про торичні вузли T(n, 4) і поліноми Чебишова
The Alexander polynomials ∆n,3(t) and ∆n,4(t) are presented as a sum of the Alexander polynomials ∆k,2(t). These polynomials are also expressed in the form of a sum of Chebyshev polynomials of the second kind. These expansions allow one to introduce the "coordinates" in corresponding bases...
Gespeichert in:
Datum: | 2012 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Publishing house "Academperiodika"
2012
|
Schlagworte: | |
Online Zugang: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021294 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Ukrainian Journal of Physics |
Institution
Ukrainian Journal of PhysicsZusammenfassung: | The Alexander polynomials ∆n,3(t) and ∆n,4(t) are presented as a sum of the Alexander polynomials ∆k,2(t). These polynomials are also expressed in the form of a sum of Chebyshev polynomials of the second kind. These expansions allow one to introduce the "coordinates" in corresponding bases, which are proposed to be the numerical invariants characterizing links and knots. |
---|