Про торичні вузли T(n, 4) і поліноми Чебишова

The Alexander polynomials ∆n,3(t) and ∆n,4(t) are presented as a sum of the Alexander polynomials ∆k,2(t). These polynomials are also expressed in the form of a sum of Chebyshev polynomials of the second kind. These expansions allow one to introduce the "coordinates" in corresponding bases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
1. Verfasser: Pavlyuk, A.M.
Format: Artikel
Sprache:English
Veröffentlicht: Publishing house "Academperiodika" 2012
Schlagworte:
-
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021294
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:The Alexander polynomials ∆n,3(t) and ∆n,4(t) are presented as a sum of the Alexander polynomials ∆k,2(t). These polynomials are also expressed in the form of a sum of Chebyshev polynomials of the second kind. These expansions allow one to introduce the "coordinates" in corresponding bases, which are proposed to be the numerical invariants characterizing links and knots.