Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication
Let R be a ring with an endomorphism σ. We introduce (σ, 0)-multiplication which is a generalization of the simple 0- multiplication. It is proved that for arbitrary positive integers m ≤ n and n ≥ 2, R[x; σ] is a reduced ring if and only if Sn,m(R) is a ring with (σ, 0)-multiplication.
Saved in:
Date: | 2014 |
---|---|
Main Authors: | Abdioglu, C., Şahinkaya, S., KÖR, A. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2014
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152357 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication / C. Abdioglu, S. Şahinkay, A. KÖR // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 1–11. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Rigid, quasi-rigid and matrix rings with (σ, 0)-multiplication
by: C. Abdioglu, et al.
Published: (2014) -
Rigid, quasi-rigid and matrix rings with \((\overline{\sigma},0)\)multiplication
by: Abdioglu, Cihat, et al.
Published: (2018) -
Associated prime ideals of weak σ-rigid rings and their extensions
by: Bhat, V.K.
Published: (2010) -
Differentially trivial and rigid right semi-artinian rings
by: Artemovych, O.D.
Published: (2004) -
Differentially trivial and rigid right semi-artinian rings
by: Artemovych, O. D.
Published: (2018)